Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Open Forum Infectious Diseases ; 9(Supplement 2):S777, 2022.
Article in English | EMBASE | ID: covidwho-2189968

ABSTRACT

Background. Which components of the immune response to SARS-CoV-2 vaccination best protect against subsequent infection remains unclear. We explored SARS-CoV-2 specific antibody and B-cell responses post 3rd dose vaccine and their relationship to subsequent SARS-CoV-2 infection. Methods. In a multicentre prospective cohort, adult subjects provided samples before and 14 days (d14) post 3rd dose vaccine with Pfizer-BioNTech 162b2. At 18-22 weeks post vaccine, subjects self-reported SARS-CoV-2 infection (confirmed by PCR or antigen test). We used electrochemiluminescence assays to quantify antibodies to SARS-CoV-2 spike subunit 1 (S1), subunit 2 (S2) and receptor-binding domain (RBD) in plasma (reported inWHOIU/mL). In a subset of subjects, we assessed SARS-CoV-2 specific differentiated B-cell (plasma cell) and memory B-cell responses from peripheral blood mononuclear cells. Unstimulated plasma cells, and memory B cells stimulated with R848 and IL2, were seeded on plates coated with RBD or full Spike antigen and antigen-specific responses measured by ELISpot (Mabtech ELISpot, Sweden). We compared between group differences by Wilcoxon signed rank or Mann-Whitney tests. Data are median [IQR] unless specified. Results. Of 133 subjects (age 43 [32-50], 81.2% female (table 1), 77 subjects in the B-cell subgroup (table 2)), 47 (35.3%) reported SARS-CoV-2 infection post 3rd vaccine. Antibody titres, plasma cell and memory B-cell responses all increased significantly at d14 post 3rd vaccine (Table 1 & 2, all P< 0.001). Although d14 antibody titres did not differ in those with and without subsequent infection (table 1), those reporting subsequent infection had significantly lower d14 RBD-specific plasma cells and a lower proportion of RBD-specific memory B-cells (Figure 1a-b, both P< 0.05). Similar results were observed with full-spike-specific memory B-cell responses (Figure 1d). The differences persisted when the non-infected group was restricted only to those reporting a confirmed close contact (n=26). Conclusion. Infection following 3rd dose vaccine is associated with lower d14 circulating and memory B cell responses, but not antibody titres, suggesting B-cell responses better predict protection against subsequent SARS-CoV-2 infection.

2.
Open Forum Infectious Diseases ; 9(Supplement 2):S2-S3, 2022.
Article in English | EMBASE | ID: covidwho-2189490

ABSTRACT

Background. Long COVID is a heterogenous condition. We previously demonstrated distinct phenotypes of long COVID, but the impact of later waves caused by SARS-CoV-2 variants on long COVID presentations has not been described. Methods. We selected individuals with ongoing symptoms > 4 weeks from PCR-confirmed COVID-19 in a multicentre, prospective cohort study. We used multiple correspondence analysis and hierarchical clustering on self-reported symptoms to identify symptom clusters, in individuals recruited during two periods;cohort 1 from March 2020 to April 2021, and cohort 2 from April 2021 to March 2022. We explored differences in symptoms by mapping acute infection to one of four COVID-19 waves in Ireland (table 1) as well as vaccination status, and used Chi2 test to compare symptoms frequencies. Results. Demographics are shown in Table 2. Cluster analysis of each cohort demonstrated 3 distinct clusters in both cohorts, which shared similar clinical characteristics;a musculoskeletal/pain symptom cluster, a cardiorespiratory cluster and a third less symptomatic cluster (Figure 1). While symptoms within clusters were similar across both periods, in the cardiorespiratory cluster, the frequency of palpitations decreased (56% vs 16%) and cough increased (14% vs 45%) between reporting periods (both P< 0.01). Furthermore, a greater proportion of palpitations were reported in those with COVID-19 from waves 1 and 2 (35% and 28%) compared to 3 and 4 (both 12%, P< 0.001), and a greater proportion of chest pain in waves 1, 2 and 4 compared to wave 3. There were no differences in other symptoms (Table 3). Additionally there were significantly less palpitations reported in those vaccinated at the time of review (17% vs 31% P=0.002), but not chest pain (30% vs 39% P=0.13). In multivariate analysis, infection in wave 3 and 4 but not vaccination status remained significantly associated with lower reported palpitations (OR (95% CI) 0.28 (0.13-0.97) and 0.5 (0.06-0.87) for waves 3 and 4, both P< 0.05), and wave 3 infection remained independently associated with lower reported chest pain (OR 0.3 (0.25-0.7)). Conclusion. Three symptom clusters define long COVID across the two cohorts, but characteristics of the cardiorespiratory phenotype have evolved over time with evolution of SARS-CoV-2 variants. (Table Presented).

SELECTION OF CITATIONS
SEARCH DETAIL